
 - 1 - 6/19/2008

Binning

1 Binning Conceptual Model

The proposed binning conceptual model is comprised of pass and fail soft bin groups,

counters, device specs, zero or more soft-to-hardware bin maps, bin setting mechanisms,

bin based events, and notions of a null bin and bin arbitration.

The motivation behind these elements and the structure imposed on them, besides the

obvious classification of devices based on test results and collection of granular test data,

is to enable writing easy to maintain code. Specifically, we exploit the relationship

between device specifications and software bins so that editing (adding, deleting,

enabling, disabling) device specifications and bins can alter the execution of a properly

designed flow without having to edit the code describing that flow.

1.1 Top Level Container

This container has an id and contains general information and two groups of soft bins:

pass bins and fail bins
1
. The conceptual model for each group is the same hence, one

syntax should suffice for both.

The general information consists of a user-settable/readable property ContinueOnFail

which is used as the default on bins for which this property is not explicitly set.

1.2 Soft Bin Group

Each group contains one or more axes which in turn contain soft bins. If the group

contains only one axis, the axis may be anonymous. If the group contains two or more

axes
2
, each axis must have an identifier unique to the group. Each axis contains one or

more soft bin definitions. Each soft bin definition identifier must be unique to the axis.

ContactOpens ContactShorts Functional Timing

5 5 6 7

Table 1: Fail bin group with anonymous axis

 3.00GHz 2.93GHz 2.66GHz ClockSpeed

8Mb 1 3 3

4Mb 2 4 4

CacheSize

1
 Teradyne has type error in addition to pass and fail. Handle errors via OnError entry point with no

special bin category?
2
 Explore the use of nested axes.

 - 2 - 6/19/2008

Table 2: Pass bin group with two labeled axes

Table 1 and Table 2 are representations of typical soft bin groups. Axis labels are shown

in bold white on black background and soft bin names are shown in bold black on white.

Table 1 is in effect a 1 x 4 array, i.e., 1 anonymous axis with 4 soft bin definitions. If

there is a soft-to-hard bin map, each of the array elements shown in yellow must be

mapped to a hardware bin. Hardware bin numbers imposed by an associated bin map are

shown in green.

Table 2 is a 3 x 2 array, axes labeled ClockSpeed and CacheSize which have 3 and 2 soft

bins respectively. Again, if there is a soft-to-hard bin map, each of the array elements

shown in yellow must be mapped to a hardware bin.

The group has user-settable/readable property color of type String which serves as the

default color for bins under that group, and a read-only property which returns the

number of Axes in the group as an Unsigned.

1.3 Soft Bins

1.3.1 Null Bin

The null bin is used to define generalized actions. For example, a TestBase fail action for

most production tests or flows derived from it, is to bin and stop, i.e., a single action that

takes a bin argument: if the argument is null, it neither sets the bin nor stops, if it is a

user-defined bin it sets the bin and then stops
3
.

3
 Set TestBase fail bin data member to null and override the fail bin data member of the derived test or flow

with a user-defined bin. Define stop action semantics, e.g., trigger an entry point where software bin

arbitration can be done? Does it unwind the stack and carry out post actions ?

 - 3 - 6/19/2008

1.3.2 User Defined Bins

Data Type Data

Description

Comment

Const String color Hexadecimal RGB value or text, e.g., red.

Used for print or display purposes.

Default value is the group color.

Boolean enable Disabled bins are treated as though they

didn’t exist at run-time. Bins are enabled

by default.

Const String general

descriptor

May require several, e.g., character for a

wafer map, short string for restricted real

estate descriptor, and verbose descriptor.

Const enumerated/string/id name Allow for conversion to number or spec

storage ? See user defined name in

1450.0.

Const Integer number Bin number is optional. Default value is

the index (starts at zero).

Const Boolean pass/fail Whether a bin is a pass or a fail bin is

determined by the group in which it is

defined

Mutable Unsigned retest Non-zero causes retest on fail up to N

times
4

Table 3: User-settable soft bin properties

Table 3 shows only the bin properties that are programmed directly by the user via

definition syntax. User-defined bins may be referred to by name or number and

interrogated for additional information (see section 1.8 and Table 4).

Data Type Data

Description

Comment

Const Unsigned index The index into the Axis, i.e., array of bins.

Const Unsigned counter The number of times a bin has been set.

See section 1.6 and Figure 6

Const Boolean is_set True if the bin is set. See Figure 6.

Table 4: Read-only soft bin properties

4
 If the program stops and retest is non-zero, retest is decremented and an OnRetest event

is generated. If retest is zero on stop, the program stops and restores retest’s original

value.

 - 4 - 6/19/2008

1.4 Hard Bins

Same as user-defined soft bins (see

Table 3 and Table 4) if required. Question: are hard bin definitions required or is an

integer representing a hard bin sufficient
5
 ?

1.5 Bin Setting and Arbitration

Bins are automatically unset by the OnStart event handler. When a bin is set, it remains

set until the next OnStart event. Bins may be set only in the context of FlowNode, Test,

and/or Flow (post?) actions via one of the mechanisms described in

Table 5.

Mechanism Parameters Action

Bin 1. bin name, number, or variable Set bin and continue.

SetBinStop
6
 1. bin name, number, or variable

2. Boolean ContinueOnFail

Continue if parameter 1 is the null bin,

otherwise set bin and based on

parameter 2 either stop (generates

OnFinish event) or continue.

SetBinRetest 1. bin name, number, or variable

2. Boolean ContinueOnFail

3. Unsigned Integer retest

Same as SetBinStop with additional

retest actions.

Retest schemes:

a. If the program stops and retest

is non-zero, retest is

decremented and an OnRetest

event is generated. If retest is

zero on stop, the program stops

and restores retest’s original

value.

b. make retest Boolean and use an

unsigned Integer data element

(in the softbin group container?)

to control the maximum number

of reprobes.

c. provide bin independent retest

syntax.

Table 5: Soft Bin Setting Mechanisms

Looking back on the Table 2 example, independent tests may reach different conclusions

regarding device speed, e.g., an at-speed functional test passes the device at 2.93GHz

whereas a timing test determines that the device meets its 3.00GHz spec. For various

5
 That integer is in the Map statement in the BinMap block.

6
 Stop, a related mechanism, has nothing to do with binning.

 - 5 - 6/19/2008

purposes, hardware binning being among them, one of the two bins, presumably the

lesser 2.93GHz bin is chosen to act upon.

An Axis is an object that returns, e.g., the highest index bin that is set when queried.

If, in the Table 2 example, the at-speed functional test fails and a timing test still

determines that the device meets its 3.00GHz spec, then the fail bin should be acted upon.

If multiple fail bins are set the lowest (highest) index bin is acted upon.

Alternatively or additionally, the syntax can provide means for interpreting any

combination of pass and fail bins that have been set.

1.6 Counters

1.6.1 Soft Bin Counters
Proposed: there is a counter group for each object in the binning hierarchy beginning with the top

level. Each counter in the group is initialized/re-initialized by a different event (see

Table 6 for a list of supported events) and automatically incremented when a bin is set
7
.

The counters are chained such that incrementing a group at the lowest level, increments

every group above it. The entire structure is repeated for each site.

1 OnLoad

2 OnLotStart

3 OnWaferStart

4 OnRetest

5 OnStart

Table 6: Counter group consists of one counter for each of these events

The Table 1 / Table 2 example is used to describe the counters mechanism. Assuming

single site, there are 75 counters in this example, one group per each of the fifteen objects

in the hierarchy shown in Table 7 times five counters per group, one counter per event

shown in

Table 6.

7
 The language provides read-only access to these counters.

 - 6 - 6/19/2008

As the events in

Table 6 occur, each of the corresponding counters in the 15 groups of

Table 7 is initialized.

1 Top Level Soft Bin Groups Axes Bins

2 Pass

3 ClockSpeed

4 3.00GHz

5 2.93GHz

6 2.66GHz

7 CacheSize

8 8Mb

9 4Mb

10 Fail

11 Anonymous

12 ContactOpens

13 ContactShorts

14 Functional

15 Timing

Table 7: a counter group per row per site

When a bin is set, the corresponding counter hierarchy is incremented. For example, a

timing test sets the 2.93GHz bin, incrementing the 2.93GHz counter group (Table 7, row

5), the ClockSpeed counter group (Table 7, row 3), the Pass counter group (Table 7, row

2), and the Top Level counter group (Table 7, row 1).

Support bin yield alarms (too high, too low).

1.6.2 Hard Bin Counters

Same as soft bin counters, i.e., is there any reason for the conceptual model to be

different ?

1.6.3 Counter Based Events

These are events triggered by counter contents or calculations involving counter contents

and handled by EntryPoints, e.g., scrubbing and/or re-probing for up to three consecutive

 - 7 - 6/19/2008

contact test failures, characterizing every Nth good device, or stopping and raising an

alarm when device yield drops below a certain point..

1.7 User-defined Device Specifications

Proposed: for software maintenance purposes it is useful to allow one or more sets of

user-defined device specs per axis. The intent is to be able to write tests that can iterate

simultaneously over axis bins and their corresponding specs. To be used for this purpose,

each named specification must be able to hold a one or more values (min, max, or min

and max) per bin
8
.

In our example, one set of device specifications may be used for ac timing tests for a

micro-processor. A single timing test can then iterate over each spec, e.g., data setup

time, iterate over the timing values associated with the 3.00GHz, 2.93GHz, and 2.66GHz

portions of that spec and bin the device accordingly.

Adding another spec, e.g., data hold time, then becomes a matter of adding in effect, a

named variable with three values (assuming minimums only), one for each bin under

ClockSpeed. Adding another ClockSpeed becomes a matter of adding a bin and a

corresponding value to each of the specs associated with the ClockSpeed axis. Disabling

one or more ClockSpeed bins can be implemented as a simple Boolean function.

1.8 Data Access

Proposed: access is provided for both stored and processed data, e.g., the contents of a

counter (stored) and the dominant bin if more than one is set
9
 (processed).

Stored data may be accessed via the object hierarchy using, e.g., a dot syntax: a.b.c where

data element c is contained by object b which is contained by object a. If b is an array

then c of the first element of b may be accessed by, e.g., a.b[0].c (consider associative

arrays for binning, i.e., the index may be other than numeric).

Processed data may be accessed via the object hierarchy using, e.g., a dot syntax: a.b.c()

where function c is a member of object b which is contained by object a.

Appropriate member functions need to be defined for each object type.

2 Soft to Hard Bin Maps

Proposed: we provide the capability to define zero or more named maps and a mechanism

for selecting the currently active map. Each map has no less than one entry for each cell

in the array of enabled software bins formed by the bin axes, and no more than one entry

8
 STIL.0 Spec and Category syntax may be applicable here: Spec per Axis, Category per Bin.

9
 The dominant bin is used for soft to hard bin mapping, for example.

 - 8 - 6/19/2008

for each cell in the array of enabled and disabled software bins
10

. For single axis bin

definitions, that means one entry per software bin. For multi-axis arrays, that means one

entry for each combination of software bins. Each entry maps a software bin array cell to

a hardware bin, specified as an unsigned Integer.

Assuming all bins are enabled, the example used in this document requires one entry for

each fail-bin in the anonymous one dimensional array, and one entry for each of the

combinations of ClockSpeed/CacheSize axis bins, i.e., 3 x 2 equals 6 entries.

3 Binning Syntax

3.1 Definitions

Figure 1: Soft bin definition

10

 In other words, disabled bin cell entries are optional.

softbin_property =
 <

 Color = String; | // Hex RGB or name

 Enable = Boolean; |

 Number = Integer; | // 2 bins with same number OK

 Retest = Unsigned; | // Hold off on semantics

 Terse = String; |

 Verbose = String; |

 WafermapChar = Character;

 >

softbin_definition =

 Bin SOFTBIN_NAME; | // Sets property Name

 Bin SOFTBIN_NAME { softbin_property* }

 - 9 - 6/19/2008

Figure 2: Soft bin definition block

Figure 3: Soft to hard bin mapping block

If the bracketed Map statement in Figure 3 specifies multiple bins, comma is used as a

separator, e.g.:

Map [Pass.ClockSpeed."3.00GHz", Pass.CacheSize."8Mb"] 1;

or, since the two bin descriptors are unique in the context of the BinDefs block being

mapped:

Map ["3.00GHz", "8Mb"] 1;

The bracketed Map statement requires that all bin descriptors refer to the same group, i.e.,

either Pass or Fail, and that each bin listed comes from a different axis in that group.

Each Map statement should contain a unique combination of bins. The totality of Map

statements should cover all combinations. For the example used in this document, that

requires 3 x 2 = 6 Map statements to map all Pass bins..

BinDefs BINDEFS_NAME {

 (ContinueOnFail = Boolean;) // Contained bin default, false if unspecified
 Pass {

 (Color = String;) // Contained bin default, “green” if unspecified

 (softbin_definition*) |

 (Axis AXIS_NAME {

 softbin_definition*

 })*

 }

 Fail {

 (Color = String;) // Contained bin default, “red” if unspecified

 (softbin_definition*) |

 (Axis AXIS_NAME {

 softbin_definition*

 })*

 }

}

BinMap BIN_MAP_NAME {

 (Map (Pass.|Fail.)(AXIS_NAME.)SOFTBIN_NAME Integer;)* |

 (Map [(Pass.|Fail.)(AXIS_NAME.)SOFTBIN_NAME)+] Integer;

)*

 - 10 - 6/19/2008

Changes from P1450-4-D18-SyntaxSummary11-28-2007.pdf:

� Removed Integer option in “Bin SOFTBIN_NAME (Integer);“ because:

o in the context of Axis it is unclear what the relationship between that

Integer and the index of a Bin is.
a gap in the number sequence and duplicate integers pose problems with iterating over Bins if that

Integer is the index.

� Table 3Added individual soft bin properties as per Table 3. This captures the

intent of the Integer above using a different syntax.

� Added keyword Map to each line under BinMap to conform with 1450.0 general

STIL statement form: Keyword (OPTIONAL_TOKENS)*;

� Required at least one soft bin in brackets for 2
nd

 statement under BinMap.

� Substituted white-space for -> in statements inside the BinMap to mimic 1450.1

NameMaps syntax (that syntax puts the use of keyword Map in question):

NameMaps VECTOR_ASSOCIATIONS {

 Signals {

 "A" "top_test.PI[0]";

 "B1" "top_test.PI[1]";

 "C1" "top_test.PI[2]";

 "D11" "top_test.PI[3]";

 }

 SignalGroups {

 _PI "top_test.PI";

 _PO "top_test.PO";

 }

 Variable { _PATCOUNT "PATTERN"; }

}

3.2 Usage and Data Access

3.2.1 Group Property Access Syntax

Figure 4: Group Property Access

group_property =
 <

 Color | // String (hexadecimal RGB or name, e.g., red

 isAnyBinSet | // Boolean

 NrOfAxes // Unsigned

 >

group_property

 - 11 - 6/19/2008

3.2.2 Axis Property Access Syntax

Figure 5: Axis Property Access

3.2.3 Bin Property Access Syntax

axis_property =
 <

 highestSetBin | // Unsigned(Integer in case no bin is set ?)

 lowestSetBin | // Unsigned(Integer in case no bin is set ?)

 NrOfBins | // Unsigned

 Name // String

 >

group = < Pass|Fail >

(BINDEFS_NAME.)group[Integer|AXIS_NAME].axis_property

 - 12 - 6/19/2008

Figure 6: Bin Property Access

For example, the expression
11

:
 Pass[ClockSpeed][”3.00GHz”].Index

yields 0, the index of bin ”3.00GHz”, whereas:
 bindefs.Pass[ClockSpeed][0].Name

yields the bin name string ”3.00GHz”12, assuming an instance of type BinDefs

named bindefs exists.

Expression:

11

 This form requires that the program knows the in-use instance, e.g., bindefs.
12

 The returned string does not include quotes, regardless of whether they were used in the bin name or not

unless String provides a mechanism for getting an unquoted version.

counter_reset_event =
 <

 OnLoad |

 OnLotStart |

 OnRetest |

 OnStart |

 OnWaferStart

 >

bin_property =
 <

 Color | // String

 ContinueOnFail | // Boolean

 counter.counter_reset_event | // Unsigned

 Enabled | // Boolean

 Index | // Unsigned

 IsFailBin | // Boolean

 isSet | // Boolean

 Name | // String

 Number | // Integer

 retest.(current|Original) | // Unsigned

 Terse | // String

 Verbose | // String

 WafermapChar // Character

 >

group = < Pass|Fail >

(BINDEFS_NAME.) group[Unsigned|SOFTBIN_NAME].bin_property |

(BINDEFS_NAME.) group[Unsigned|AXIS_NAME][Unsigned|SOFTBIN_NAME].bin_property

 - 13 - 6/19/2008

 bindefs.Pass.ClockSpeed[”3.00GHz”].counter.OnLoad

yields an Integer representing the number of times bin ”3.00GHz” has been set since

the test program was loaded.

3.2.4 Binning Syntax

Binning code is restricted to specific blocks
13

. For tests and flows, that is in the

PostAction, PassAction, and FailAction blocks. For flow-nodes, that is in the PostAction

and exit-port action blocks.

Statements SetBin, Stop, and SetBinStop are provided because they represent

commonly used actions provided by most testers and are easily parsed by both human

and machine, e.g.., it is easier to find SetBinStop occurrences than the equivalent If

statement syntax provided below.

Figure 7: Binning

The SetBin statement sets the bin only, i.e., does not stop. Of the two Stop statement

forms, the first is unconditional, the second only stops if ContinueOnFail is False.

SetBinStop semantics are equivalent to the following
14

:

 If FailBin != NoBin

 { SetBin; If FailBin.ContinueOnFail == False Stop; }

13

 Re-evaluate with respect to Skip action, i.e., maybe PreAction binning should be allowed.
14

 Lots of assumptions about syntax which is incompletely defined in syntax document.

bin_identifier =
 <

 Bin = Bin; |

 Index = Unsigned; |

 Name = User_defined_name; | // See 1450.0

 Number = Integer;

 >

SetBin Bin; |

SetBin { bin_identifier } |

SetBinStop Bin; |

SetBinStop { (bin_identifier) (ContinueOnFail=Boolean;) }

Stop; |

Stop { (ContinueOnFail=Boolean;) }

 - 14 - 6/19/2008

3.2.5 NoBin Properties

NoBin is a special bin defined by the standard. It has no user-settable properties. Figure

8 shows the values returned when NoBin properties are interrogated. Refer to Figure 6

for the definition of counter_reset_event.

Figure 8: NoBin Properties

Issues:

• Do we allow Bin assignment, i.e., Bin::operator=(const Bin&), ref Index, Number

• MaxUnsigned or Infinity are currently not keywords. What are the merits of

each, assuming Infinity could be used across types, e.g., Integer, Real, Seconds,

etc

3.2.6 Re-probe Syntax

Issue: define format easily mapped to multiple targets. Is there such a thing ? Delay to

phase II ?

3.3 Examples

4 Spill-over Issues
Some issues arising in the context of binning spill over into other areas of the language

and/or vice versa, begging for some co-ordination to minimize unnecessary proliferation

of rules and concepts. These are merely alluded to here, expecting resolution in the

greater context:

 Color // String "grey"

 ContinueOnFail // Boolean True

 counter.counter_reset_event // Unsigned, default = 0, incremented when set

 Enabled // Boolean True

 Index // Unsigned MaxUnsigned|Infinity

 IsFailBin // Boolean False

 isSet.counter_reset_event // Boolean, default = False, becomes True when set

 Name // String "NoBin"

 Number // Integer MaxUnsigned|Infinity

 retest.(current|Original) // Unsigned 0|0

 Terse // String "" (empty)

 Verbose // String "" (empty)

 WafermapChar // Character ' ‘ (space)

 - 15 - 6/19/2008

a. Initialization: when defining an object such as a variable, it is useful to be able to

specify the event that initializes/re-initializes it, e.g., one counter may be re-

initialized by event OnWaferStart, another by event OnLoad, etc.

b. Object member functions: it is useful to specify member functions for integral

objects, e.g., string.length(), array.dim(), array.dim(0).length(), etc.

c. Do we want to allow string to number-with-units conversion ?

d. Do we provide syntax to allow the user to trigger an EntryPoint event, e.g., trigger

OnStart or OnRetest for retest ? Support more standard or user-defined events,

e.g., low bin yield alarms ? Delayed until phase II.

e. IO syntax, e.g., cin, cout, cerr, clog, stringstream, file IO, formatting, etc. Delayed

until phase II.

f. Prior to optional property access syntax, the in-use BinDefs must be known

(currently described in TestProgram block which comes last).

g. A context sensitive keyword for the null bin is required, e.g., NullBin or NoBin.

Settled on NoBin.

h. Need OnRetest event/EntryPoint (initializes retest.current along with

OnLoad). Done.

In order to adequately describe binning behavior or syntax, some clarification regarding

the semantics and/or syntax associated with existing language elements is necessary.

Clarification is needed for the:

a. semantics regarding OnStart and OnSiteStart EntryPoints: OnSiteStart has been

dropped.

b. use of dot 0 Spec/Category syntax, i.e., how do we access, e.g., Meas under Spec

tmode_spec, or Max under variable tplh under Category tmode under Spec

tmode_spec ? Do we need a Meas for every Category (device in different state

may have different measurement result for the same Spec) ?

c. dot 4 provided basic test definitions: syntax requirements may change depending

on what pre-defined test elements exist in dot 4, e.g., if all we provide is a

functional test then in order to be define an DC or AC parametric test, syntax that

permits the iterative alteration of a specific level or timing edge is required. If dot

4 provides basic tests to perform linear and binary searches that syntax may take

on a different character. Run-time efficiency may be affected by our choices.

d. definition of dimensioned array variables.

e. Does String provide a mechanism for getting unquoted version ?

E. J. Wahl

ejwahl@att.net

(304) 647-4784

