

There are 3 types of stationary points: maximum points, minimum points and points of inflection.

## Maximum Points

Consider what happens to the gradient at a maximum point. It is positive just before the maximum point, zero at the maximum point, then negative just after the maximum point.

The value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is decreasing so the rate of change of $\frac{d y}{d x}$ with respect to $x$ is negative
 i.e. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is negative.

## Minimum Points

Just before a minimum point the gradient is negative, at the minimum the gradient is zero and just after the minimum point it is positive.

The value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is increasing so the rate of change of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with respect to $x$ is positive

i.e. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is positive.

## Points of Inflection

At some points $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$.
Two such points are shown in the sketches. They are called points of inflection

Note that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is also zero at some maximum and minimum points. To find the type of stationary point, consider the gradient at each side of it.


## Sketching Curves

## Find the stationary point(s):

- Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and put it equal to 0 , then solve the resulting equation to find the $x$ co-ordinate(s) of the stationary point(s).
- Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and substitute each value of $x$ to find the kind of stationary point(s). (+ suggests a minimum, - a maximum, 0 could be either or a point of inflection)
- Use the curve's equation to find the $y$ co-ordinate(s) of the stationary point(s).

Find the point(s) where the curve meets the axes:

- Substitute $x=0$ in the curve's equation to find the $y$ co-ordinate of the point where the curve meets the $y$ axis.
- Substitute $y=0$ in the curve's equation. If possible, solve the equation to find the $x$ co-ordinate(s) of the point(s) where the curve meets the $x$ axis.

Sketch the curve, then use a graphic calculator to check.

Example To sketch $y=4 x-x^{2}$

$$
\begin{equation*}
\frac{d y}{d x}=4-2 x . \tag{1}
\end{equation*}
$$

At stationary points $\frac{d y}{d x}=0$
This gives

$$
2 x=4 \quad \text { so } \quad x=2
$$

From (1) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-2$ suggesting a maximum.
Substituting $x=2$ into $y=4 x-x^{2}$ gives: $y=8-4=4$ so $(2,4)$ is the maximum point
$\begin{array}{cl}\text { When } x=0 & y=0 \\ \text { When } y=0 & 4 x-x^{2}=0 \\ & x(4-x)=0 \\ \text { so } & x=0 \text { or } 4\end{array}$
Curve crosses the axes at $(\mathbf{0}, \mathbf{0})$ and $(\mathbf{4}, \mathbf{0})$


Example To sketch $y=2+3 x^{2}-x^{3}$

$$
\begin{equation*}
\frac{d y}{d x}=6 x-3 x^{2} \tag{1}
\end{equation*}
$$

At stationary points $\quad \frac{d y}{d x}=0$
This means

$$
6 x-3 x^{2}=0
$$

Factorising gives $\quad 3 x(2-x)=0$
with solutions $\quad x=0$ or $x=2$

From (1)

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6-6 x \quad \text { which is }
$$ positive when $x=0$ and negative when $x=2$.

Substituting the values of $x$ into $y=2+3 x^{2}-x^{3}$ : $x=0$ gives $y=2 \quad$ and $\quad x=2$ gives $y=6$

## $(0,2)$ is a minimum point

and

$$
(2,6) \text { is a maximum point }
$$

## Note

When $x=0 \quad y=2$
When $y=0 \quad 2+3 x^{2}-x^{3}=0$
Solving such cubic equations is difficult and not necessary as it is possible to sketch the curve using just the stationary points and the fact that it crosses the $\boldsymbol{y}$ axis at (0,2).


Use a graphic calculator to check the sketch. If you wish, you can use the trace function to find the $x$ co-ordinate of the point where the curve crosses the $x$ axis. In this case the curve crosses the $x$ axis at approximately $(3.2,0)$.

Example To sketch $y=x^{4}-4$

$$
\begin{equation*}
\frac{d y}{d x}=4 x^{3} . \tag{1}
\end{equation*}
$$

At stationary points $\frac{d y}{d x}=0$
This gives

$$
4 x^{3}=0 \text { so } x=0 \text { and } y=-4
$$

From (1) $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x^{2}=0$ when $x=0$
In this case the stationary point could be a maximum, minimum or point of inflection.
To find out which, consider the gradient before and after $x=0$.
When $x$ is negative $\frac{d y}{d x}=4 x^{3}$ is negative
When $x$ is positive $\frac{d y}{d x}$ is positive

$$
\begin{array}{rl}
\text { When } x=0 & y=-4 \\
\text { When } y=0 & x^{4}-4=0 \\
& x^{4}=4 \\
\text { so } & x^{2}=2 \text { and } x= \pm \sqrt{ } 2
\end{array}
$$

Curve crosses the axes at $(\mathbf{0},-\mathbf{4})$, $(-\sqrt{ } 2,0)$ and $(\sqrt{ } 2,0)$

so $\quad(0,-4)$ is a minimum point.

## Try these:

For each of the curves whose equations are given below:

- find each stationary point and what type it is;
- find the co-ordinates of the point(s) where the curve meets the $x$ and $y$ axes;
- sketch the curve;
- check by sketching the curve on your graphic calculator.
$1 y=x^{2}-4 x$
$2 y=x^{2}-6 x+5$
$3 y=x^{2}+2 x-8$
$4 y=16-x^{2}$
$5 y=6 x-x^{2}$
$6 y=1-x-2 x^{2}$
$7 y=x^{3}-3 x^{2}$
$8 y=16-x^{4}$
$9 y=x^{3}-3 x$
$10 \quad y=x^{3}+1$

For each of the curves whose equations are given below:

- find each stationary point and what type it is;
- find the co-ordinates of the point where the curve meets the $y$ axis;
- sketch the curve;
- check by sketching the curve on your graphic calculator.
$11 y=x^{3}+3 x^{2}-9 x+6$
$12 y=2 x^{3}-3 x^{2}-12 x+4$
$13 y=x^{3}-3 x-5$
$14 y=60 x+3 x^{2}-4 x^{3}$
$15 y=x^{4}-2 x^{2}+3$
$16 y=3+4 x-x^{4}$


## Teacher Notes

Unit Advanced Level, Modelling with calculus

## Skills used in this activity:

- finding mamimum and minimum points
- sketching curves.


## Preparation

Students need to be able to:

- differentiate polynomials;
- solve linear and quadratic equations;
- sketch curves on a graphic calculator.


## Notes on Activity

A Powerpoint presentation with the same name includes the same examples and can be used to introduce this topic.

## Answers

1 Minimum at $(2,-4)$, meets axes at $(0,0),(4,0)$
2 Minimum at $(3,-4)$, meets axes at $(0,5),(1,0),(5,0)$
3 Minimum at $(-1,-9)$, meets axes at $(0,-8),(-4,0),(2,0)$
4 Maximum at $(0,16)$, meets axes at $(0,16),(-4,0),(4,0)$
5 Maximum at $(3,9)$, meets axes at $(0,0),(6,0)$
6 Maximum at $(-0.25,1.125)$, meets axes at $(0,1),(-1,0),(0.5,0)$
7 Minimum $(2,-4)$, maximum at $(0,0)$, meets axes at $(0,0),(3,0)$
8 Maximum at $(0,16)$, meets axes at $(0,16),(-2,0),(2,0)$
9 Minimum $(1,-2)$, maximum at $(-1,2)$, meets axes at $(0,0),(-\sqrt{ } 3,0),(\sqrt{ } 3,0)$
10 Point of inflection at $(0,1)$, meets axes at $(-1,0),(0,1)$
11 Minimum at $(1,1)$, maximum at $(-3,33)$, meets axis at $(0,6)$
12 Minimum at $(2,-16)$, maximum at $(-1,11)$, meets axis at $(0,4)$
13 Minimum at $(1,-7)$, maximum at $(-1,-3)$, meets axis at $(0,-5)$
14 Minimum at $(-2,-76)$, maximum at $(2.5,106.25)$, meets axis at $(0,0)$
15 Maximum at $(0,3)$, minima at $(-1,2)$ and $(1,2)$, meets axis at $(0,3)$
16 Maximum at $(1,6)$, meets axis at $(0,3)$

